
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

DTIC
ELECTE D

SEP 0 5 1989
VLSI Memo No. 89-531

IC May 1989 ro

Work-Preserving Emulations of Fixed-Connection Networks

NRichard Koch, Tom Leighton, Bruce Maggs, Satish Rao, and Arnold Rosenberg

I
Abstract

In this paper, we study the problem of emulating 7T steps of an NWc-node guest network on
an NH-node host network.-We call an emulation work-presenwig if the time required by the

* host, TH, is 0(TGNG/NVjI because then both the-guest and host networks perform the same
total work, e(ToN,), to within a constant factor. We say that an emulation is real-time if
TH = O(Tc,), because then the host emulates the guest with constant delayA Although many
isolated emulation results have been proved for specific networks in the past, and measures
such as dilation and congestion were known to be important, the field has lacked a model
within which general results and meaningful lower bounds can be proved. We attempt to
provide such a model, along with corresponding general techniques and specific results in
this paper.--Some of the more interesting and diverse consequences of this work include:

1. a proof that a linear array can emulate a (much larger) butterfly in a work-preserving
fashion, but that a butterfly cannot emulate an expander (of any size) in a work-
preserving fashion,

2. a proof that a mesh can be emulated in real time in a work-preserving fashion on a
butterfly, even though any 0(1)-to-I embedding of a mesh in a butterfly has dilation
n(log N),

3. a proof that an N log N-node butterfly can be emulated in a work-preserving fashion on
an N-node shuffle-exchange graph, and vice-versa,

4. simple O(N2/log2N)-area and 0(N3/2/log3/2N)-volume layouts for the N-node shuffle-
exchange graph, and

5. an algorithm for sorting N-numbers in O(logN) steps with high probability on an N-
neshL-anggrapwith constant size queues.

Approved io public trc;

899 01034
Microsystems Massachuse ts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

Acknowledgements

To appear in the Proceedings of the 20th Annual ACM Sympasium on Theory of
Compuing, May 1989. This research was supported in part by the Defense
Advanced Research Projects Agency under contract number N00014-87-K-0825,
the Office of Naval Research under contract number N00014-86-K-0593, the Air
Force under contract number AFOSR-86-0076, and the Army under contract
number DAAL-03-86-K-0171. Leighton: was supported in part by an NSF
Presidential Young Investigator Award with matching funds from International
Business Machines Corporation, Maggs: was supported in part by an NSF
Graduate Fellowship, and Rosenberg: was supported in pan by an NSF grant
number CCR-88-12567.

Author Information

Koch: Mathematics Department and Laboratory for Computer Science, Room 2-

333, MIT, Cambridge, MA 02139. (617) 253-7826.

Leighton: Mathematics Department and Laboratory for Computer Science,
Room NE43-836A, MIT, Cambridge, MA 02139. (617) 253-5876.

Maggs: Laboratory for Computer Science, Room NE43-313, MIT, Cambridge,
MA 02139. (617) 253-7843.

Rao: Laboratory for Computer Science, Room NE43-342, MIT, Cambridge, MA
02139. (617) 253-5889.

Rosenberg: Department of Computer Science, University of Massachusetts,
Amherst, MA 01003.

Copyright© 1989 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy
is for private circulation only and may not be further copied or distributed, except
for government purposes, if the paper acknowledges U. S. Government sponsor-
ship. References to this work should be either to the published version, if any, or
in the form "private communication." For information about the ideas expressed
herein, contact the author directly. For information about this series, contact
Microsystems Research Center, Room 39-321, MIT, Cambridge, MA 02139;
(617) 253-8138.

Work-Preserving Emulations of Fixed-Connection Networks
'0 (Extended Abstract)

Richard Koch1 '2 Tom Leighton1'2 Bruce Maggs2 Satish Rao2 Arnold Rosenberg

'Mathematics Department and 3Department of Computer Science
2Laboratory for Computer Science University of Massachusetts

Massachusetts Institute of Technology Amherst, Massachusetts 01003
Cambridge, Massachusetts 02139

Abstract 1 Introduction
In this paper, we study the problem of emulating To 1.1 The Problen
steps of an N0 -node guest network on an Ne-node host
network. We call an emulation eor-preserving if the In this paper, we study the problem of emulating an
time required by the host, T/,, is O(TGNG/N,) because N-node s et network G = (V0 , Ec) on an N -node
then both the guest and host networks perform the Same o network H = (VsEs) where N u No. Our
total work, O(TONG), to within a constant factor. We goal is to emulate To step of any computation on t
say that an emulation is real-time if TH = O(Ta), be- in T = sT steps on H where s (the lotdown of the
cause then the host emulates the guest with constant emulation) is as small as aoible.
delay. Although many isolated emulation results have The slowdown of the emulation must always be at
been proved for specific networks in the past, and mea. last a sr as Non sI G h N/N te
sures such as dilation and congestion were known to be mny processors au does H. If S = O(N g/N1), then
important, the field has lacked a model within which we say that the emulation is wort.presermg because
general results and meaningful lower bounds can be then the total noto (i.e., the processor-time product)
proved. We attempt to provide such a model, along performed by the emulating network (W = T N) s
with corresponding general techniques and specific e-a onstant factor of the work performed by the
suits in this paper. Some of the more interesting and guest network (Wo = TGNo). Such emulations achieve
diverse conseqeuences of this work include: optimal speedup (to within a constant factor) over se-w quential emulations of G since they use Nil processors

1. a proof that a linear array can emulate a (much to solve a problem e(Nil) times faster than is possible
larger) butterfly in a work-preserving fashion, but with a single processor.
that a butterfly cannot emulate an expander (of More generally, we say that there is a work-preserving
any size) in a work-preserving fashion, emulation of a clas of networks G by a class of networks

2. aprof tht ameshcanbe mulaed n rel tme with slowdown S(N) if for every N and T, we can
2. a pr-tatareshin fasn e emutenrel te emulate any T steps of any S(N)N-node7 network in 1;

in a work-preserving fashion on a butterfly, even in O(S(N)T) steps on any N-node network in 7j. If

bthoughay 0(1)aton embdig ofa)esi S(N) = O(log* N) for some constant a, then we say
buttrfl ha diatio fllogN),that th, emulation is NC work-preaeving since every

3. a proof that an N log N-node butte-qy can be er- step of G can be emulated in O(log" N) steps of H. If
ulated in a work-preserving fashion on an N-node S(N) = 0(NO) for some constant a, then we say that
shuffle-exchange graph, and vie-versa, the emulation is polynromial time work-presermtng, and

so on. In the special case that S(N) = 0(l), we say that
4. simple O(N 2/ 1og N)-area and O(N51'2/ log 3 / 2 N)-. the emulation is real-time.. Real-time emulations are the

volume layouts for the N-node shuffle-exchange hardest to obtain since we require the host network to
graph, and emulate a guest network of the same size with constant

5. an algorithm for sorting N-numbers in 0(log N) slowdown.
steps with high probability on an N-node shuffle- As a simple example, let 9 be the clam of linear ar- -

exchange graph with constant size queues. rays, and? 7be the clas of all bounded-degree connected

This rmarch ywas sipported by $he Defenae Advanced Re-
search Projects Agency under Contract NO14-"-K-625, the
Office of Naval Remarch undar Contract N00014-66-K-0593, the
Air Force uadar Contract 0SR-6-O16, and the Army wnder
Contract DAAL-434W-K-0171. Tom Leighton is supported by
an NSF Presidential Young Investigator Award with matching
funds provided by IBM. Brace Mag, in supported by an NSF
Graduate Fellowship. Arnold Rosenberg is supported by NSF

Grant CCR-55-12s67. IL's
~ 0 A.or

Dkt ~-0I

networks. It is well known (18] that an N-node lin- our bounds will reflect tradeoffs between slowdown and
ear array can be embedded one-to-one in any connected inefficiency. In general,
bounded-degree N-node network with constant dilation
and congestion. (By an embedding of a graph G into = -

a graph H, we mean a mapping 0 : G - H that maps C
the nodes of G to the nodes of H and the edges of G to where C = NG/NH is the contruction of an emulation.
paths in H. The dilation of an embedding is the length
of the longest path O(e) corresponding to an edge of G. 1.2 The motivation
The congestion of an embedding is the largest number
of paths O(e) crossing a single edge of H. The load of There are several good reasons for studying the prob-
an embedding is the maximum number of nodes of G lem of emulating one network on another in a work-
mapped to a single node of H. In a one-to-one em- preserving fashion. For starters, this kind of analysis
bedding, the load is 1.) Hence any N-node bounded gives us an excellent means by which to compare the
degree connected network H can emulate any N-node computational power of one network relative to that of
linear array with constant slowdown, and thus there is another. More importantly, it gives us an automatic
a real-time emulation of the class 9 by the class N. way to compile and run algorithms designed for one

As another simple example, consider the more inter, kind of parallel architecture without loss of efficiency
esting problem of emulating a butterfly on a linear array. on another. This is provided, of course, that the ratio
We will prove that the class of butterflies cannot be reald of the size of the problem to the size of the machine is
time emulated by the class of linear arrays. (This should large enough. For example, we have already seen that a
come as no surprise, although the proof is not entirely small linear array (which has a very simple structure) is
trivial.) However, there is a simple work-preserving em,- just as efficient in terms of work as a very large butterfly
ulation of the class of butterflies by the class of linear (which has a more complicated structure).
arrays with slowdown 2N . In particular, consider an More generally, the study of work-preserving emula-
N2N-node butterfly with nodes and edges tions lies at the heart of efficient parallel computing.

Indeed, one of the central problems in efficient parallel
V = {(i, w)11 i < N,w E {O, 1)'J, and computing is the task of mapping a collection of pro-

cesses linked by precedence and/or communication con-
E = {((i, w), (i', w'))ji' = i + 1, w' = o or td = w(O)}, straints onto the processors and routing network of a

where w(') denotes w except that the ith bit is changed. paraUel machine so that

Then by mapping the 2 1v nodes of the form (i, to) (where I. the processing load imposed on the processors is
w E (0, 1)N) to the ith node of the linear array, an N- balanced,
node linear array can emulate an N2N-node butterfly
with 2N slowdown. 2. the communication between processors can be han-

Seeing this elementary example, one is tempted to dled efficiently, and
ask if there are faster work-preserving emulations of a 3. the computation and communication can be sched-
butterfly on a linear array. In other words, can we emu- uled so that the necessary inputs for a process are
late a smaller butterfly (say with polynomial blowup) in available where and when the process is - .duled
a work-preserving fashion on a linear array? Although to be computed.
the proof is not obvious, the answer is no. There is
no polynomial-time work preserving emulation of the In other words, we would like to schedule the communi-
class of butterflies by the clas of linear arrays. Any cation and computation in a way that takes maximum
such emulation requires exponential slowdown. Alter- advantage of the available hardware to minimize the
natively, we might wonder if a linear array can emu- completion time of the job.
late any bounded-degree network in a work-preserving In general, we can model the computation to be per-
fashion given enough slowdown. Again, the answer is formed by a DAG. Each node of the DAG represents a
no. Although the linear array can emulate a butter- process and each directed edge (u, v) represents a corn-
fly in a work-preserving fashion, it cannot emulate any munication that must take place between u and v. Typ-
expander, no matter how much blowup is allowed. In ically, this communication represents data output from
fact, by combining these results we can conclude that u after u is completed which is to be input to v be-
evn a butterfly is not sufficiently powerful to emulate fore v is started. The parallel machine can be modeled
an expander in a work-preserving fashion. as an undirected network. The nodes of the network

We also consider emulations that are not work- correspond to processors, and the edges correspond to
preserving. Such emulations are (by definition) ineffi- communication links between processors (and/or their
cient, and we define the inefficiency of such an emula- associated memories). The implementation of the com-
tion to be I = WH/WG. In these terms, an emulation is putation to be performed on the parallel machine then*
work-preserving if it has constant inefficiency. Many of corresponds to an embedding of the DAG in the network

so that nodes of the DAG are mapped to nodes of the slowdown. Is the reverse true? Somewhat surprisingly,
network and so that edges of the DAG are mapped to it is not. For example, Bhatt, Chung, Hong, Leighton
paths in the network. We may also need to construct a nd Rosenberg (2] proved that any embedding of an N-O schedule that specifies the communication and compu- node mesh into an N-node butterfly with constant load
tation of the DAG that is being performed during each requires dilation fO(log N), the worst possible. At first
step of the network. This will be particularly important glance, it might seem that this result implies that there
if the parallel machine is synchronous. is no real-time emulation of a mesh on a butterfly. As we

In many applications, the DAG possesses a very nat- show in this paper, however, this is not the case. There
ural structure. For example, typical DAGs encountered is, in fact, a way to emulate T steps of an N-node mesh
in practice are derivitives of a binary tree, array, butter- computation in O(T) steps on an N-node butterfly for
fly, or shuffle-exchange graph. This is often due to the any T.
fact that the DAG is associated with an algorithm whose In order to understand how such a contradictory re-
inherent underlying structure is a tree or array (as is the suit is possible, we need to take a closer look at what it
case for many problems in numerical analysis and linear means to emulate To steps of one network in Tv steps
algebra) or a butterfly or shuffle-exchange graph (as is on another. We start by modeling the computation per-
the cawe for Fourier Transform and data manipulation formed by the guest network G as a pebble DAG r. in
problems). Alternatively, it could be that the DAG was particular, we will have a pebble for every node-time
constructed from an algorithm specifically designed for pair (v, t) where v is a node of G and 0 5 t < To. (Pairs
use on one of these common parallel architectures. of the form (v, 0) correspond to inputs.) In fact, we may

Similarly, parallel networks also tend to be very nat- have many pebbles associated with a single pair (v, t),
urally structured and typically are configured as trees, which will correspond to the same computation being
arrays, butterflies, and the like. Hence, the mapping done more than once. (This is the trick that allows us
problem often consists of emulating TG steps of one NG- to emulate a mesh on a butterfly in real time.) To com-
node network (represented as a TG NG-node DAG) on an pute any pebble labeled (v, t), we need as inputs pebbles
NH-node network with a different structure. Ideally, we labeled (v, t - 1) and (i, t - 1), (v2, t - 1), .. . (v,, t - 1),
would like to perform the computation in O(TaNG/NH) where t1, v ... , vk are the neighbors of v in G. We use
steps, which is precisely the problem of finding a work- the directed edges of r to denote this dependence in the
preserving emulation of one network on another. usual way.

In practice, the guest network can be substantially Because many pebbles can have the same label, there
larger than the host network. For example, it is not un- are many DAGs r associated with any graph G. In order
common for a parallel machine with between 8 and 20 to emulate G on H, we only need to find an embedding
processors to be emulating array-based computations and an acompanying schedule of one of these DAGs in
involving hundreds of thousands of data points. In such H. Once an embedding and schedule of a DAG is fixed,
examples, even work-preserving emulations with expo- the emulation proceeds in a standard way. In particular.
nential slowdown may be within the scope of practical- during each step of the computation, a node of H can
ity. Indeed, the most important feature of the com- 1. makea copy of a single pebble that it contains,
putation is that it be wok-preserving. In fact, the
notion of a work-preserving computation is important 2. send a single pebble to a neighbor, and/or
enough that it transcends high-level architectural i- 3. create a pebble with label (v,) provided that it
sues such as SIMD vs. MIMD, synchronous vs. syn- already contains input pebbles with labels (v, t -1)
chronous, small scale vs. large scale, and fine grain vs.
coarse grain. For example, even though issues involv- and (vj,t - l),(v3,t -1),...,(v&,t -1).
ing the timing of computations and communications be- Initially, we will allow a node of H to have access
come muddied with asynchronous architectures, the un- to any input, although to use any of these inputs in a
derlying problem of embedding the computation so as to meaningful way will take time. By the end of the emu-
munimize computational load and communication load lation, we must have computed pebbles with all labels
(independent of timing) still remains. As a consequence, of the form (v,TG). (For purposes of simplicity, we will
work-preserving emulations are just as important for a use a pebble to denote the state of a processor of G
Dataflow Machine as they are for a Connection Machine at some particular time, as described above. A more
(to mention two architectures at opposite ends of the general interpretation would be to use a pebble to de-
spectrum). note one of many items (e.g., data and/or functions)

stored within a proessor. All of our results hold under

1.3 A closer look at the computational model the more general interpretation, although some of the
emulation results become more complicated.)

If we can find an embedding of a graph G into a graph By allowing several pebbles to have the same label, we
H with constant dilation, congestion, and load, then dramatically increase the number of possible computa-
it is fairly clear that H can emulate G with constant tion DAGs r that correspond to a To-step computation

of G. This makes it more likely that we can find a com- bounded-dimension requires exponential time, and that
putation that can be efficiently emulated on some host it is not possible to emulate an expander on a butter-
network H (e.g., as is the case with emulating a mesh on fly in work-preserving fashion. These results provide
a butterfly), but it also makes the task of proving lower a curious contrast between the power of a linear ar-
bounds much more difficult. For example, in order to ray, butterfly, and an expander. By most standards, it W
prove that H cannot emulate G in real-time, we must would seem that a butterfly is closer in power to an ex-
show that for some TG, there is no DAG r associated pander than it is to a linear array. Yet a linear array can
with a TG-step computation of G that can be emulated emulate a butterfly in a work-preserving fashion, but a
in O(TG) steps on H. This can be a formidable task butterfly (or most any non-expander) cannot emulate
since r can look very different than G. Indeed, at the an expander in a work-preserving fashion.
very least, we must choose TG to be large since by al- In Sections 3-6 of the paper, we focus on the spe-
lowing redundant computations of pebbles, any 0(l) cial case of emulations on arrays, complete binary trees,
steps of any N-node bounded-degree graph G can be butterflies, and shuffle-exchange graphs, respectively. In
computed in 0(l) steps on any N-node graph H. (This Section 3, we prove tight bounds on the slowdown re-
is because if T = 0(1), then any output pebble can quired for an array to emulate a tree, array or butterfly.
only depend on 0(1) input pebbles, which can be re- In Section 4, we prove that there is a work-preserving
dundantly computed locally since every node of H is emulation of bounded-degree trees by complete binary
assumed to have access to all input pebbles.) trees with O(log log N) slowdown. We also give evi-

Note that when we prove a lower bound on the ability dence, but no proof, that there is no corresponding real-
of a graph H to emulate a graph G, it does not neces. time emulation for this class. (Proving that a complete
sarily mean that H cannot effectively compute the same binary tree cannot emulate a complete ternary tree in
result as does G (possibly by using a different algorithm, real-time is one of several challenging questions left open
for example). Rather, we are proving lower bounds on in this paper.)
the ability of H to perform the same step-by-step com In Section 5, we show that the class of arrays with
putations as G when G is used in a general purpose bounded dimension can be emulated in real-time on a
way. Hence the term emslation. We suspect that our butterfly. This result is interesting because any one-to-
pebbling model is probably the most general model in one embedding of an array (with dimension 2 or more)
which we could hope to prove lower bounds. in a butterfly requires !n(log N) dilation [2], which sug-

Throughout the paper we will make use of the fact gests that a real-time emulation is not possible. The re-
that if there is an embedding of G in H with congestion suit takes on added significance given the fact that many
c, dilation d, and load 1, then there is an emulation of G parallel numerical algorithms are array-based while sev- W
by H with slowdown 0([+ c + d). This follows for any eral parallel machines are butterfly-based.
H from the construction in (11]. When H is an array, We also describe a simple constant-congestion embed-
tree, butterfly, or shuffle-exchange graph, the schedule ding of an N-node shuffle-exchange graph in an .V-node
can be computed on-line using the randomized routing butterfly in Section 5. This result has several impor-
algorithm in (11]. tant consequences. First, it can be used to provide

an elementary proof that the N-node shuffle-exchange

1.4 Our results graph can be laid out in O(N 2 /log 2 N) area and in
O(N 3 / 2 / log3/ 2 N) volume. Both results are optimal.

The technical portion of this paper is divided into five The area bound was known previously [7], but the proof
sections. We commence in Section 2 with some general was much more difficult (as were the proofs for sev-
techniques for establishing the existence or nonexistence eral nonoptimal layouts for the shuffle-exchange graph
of a work-preserving emulation. In particular, we de- (6, 10, 12, 19]). The 3-d layout bound is new and was
scribe two general methods for proving lower bounds not obtainable by any of the previous approaches to the
on the slowdown of a work-preserving emulation. The 2-d layout problem. Second, we apply the result to de-
first method is based on dilation considerations and ap- rive an 0(log N)-slowdown work-preserving emulation
pears in Section 2.1. As an application of this method, of the shuffle-exchange graph on the butterfly.
we prove that any clas of low diameter networks (such In Section 6, we prove the reverse, namely, that there
as complete binary trees) cannot be emulated in real is an 0(log N)-slowdown work-preserving emulation of
time on any clas of networks that has poor expansion the butterfly on the shuffle-exchange graph. Taken to-
properties (such as arrays of bounded dimension). gether, these results come very close to resolving a long

The second method is based on congestion proper- open question concerning whether or not the butterfly
ties and is presented in Section 2.2. Here we describe a and shuffle-exchange graph are computationally equiva-
general method for proving that a work-preserving em- lent. In particular, we show that up to NC emulations,
ulation requires a large amount of time, or that it is im- the butterfly and shuffle-exchange graphs are equivalent
possible altogether. As an example, we prove that any in a work-preserving sense. Thus, for many problems,
work-preserving emulation of a butterfly on an array of they can be considered to be computationally equiva-1W

* lent. 2.1 Distance-based lower bound
As a consequence of the emulations in Section 6, we The following theorem shows that if the guest graph

'i also obtain a real-time emulation of bounded-degree ar- grows faster than the hosi graph, then ny emulation of
rays in the shuffle-exchange graph, and we show how gro st ty the hos grph e a e ltn
to sort N numbers with high probability in O(log N) the guest by the host must be slow.
steps on an N-node shuffle-exchange graph. Although Theorem I Let H = (VV, Eq) be an N'-node host
the proof of the sorting bound is elementary, it resolves graph and G = (VG, EG) be an No-node guest graph,
an open question concerning the difficulty of random- and suppose that there are integers r" and rG Such that
ized sorting algorithms on the shuffle-exchange graph. tK ?o
Previously, such an algorithm was known for the but- max bf(u,i) < mi bo(v,j).
terfly [11, 15, 17] but that algorithm made crucial use of UGV. ,Ve f
the recursive structure of the butterfly, a structure not
present in a shuffle-exchange graph. iofdG H

S > (r + l)/2ro.
1.5 Previous work

There has been a great deal of previous work on graph Proof: The basic idea is to find a sequence of TG/rG
embeddings with the intent of showing that one network pebbles in any TG-step pebble DAG of G such that each
can or can't emulate another network efficiently [2, 3, 4, pair of pebbles is separated by at most ro guest time
5, 11, 16]. Many of the results were positive and proved steps but are created in H at least rff host time steps
things like "all N-node binary trees can be emulated in apart. As we shall see, such a sequence exists only if
constant time on an N-node hypercube." There were the slowdown S = TH/T is at least (rjv + 1)/2ro.
also some negative results, but because of the lack of We start the sequence with the last pebble created
a good model, their significance is now less clear. For by H. Suppose that at time Tf some node u0 E VH
example, even though an embedding of a mesh into a creates a pebble for DAG node (vo,to), where to = TG.
butterfly requires dilation f(]og N), we now find that a The pebble for (to, to) cannot be created by H until
butterfly can emulate a mesh with constant slowdown, pebbles for all of its predecessors in the DAG are cre-

The notion of work-preserving emulations in PRAM ated. In particular, there are at least ! bo(v0, j)
models has previously been studied (8, 13] and served precedessors for time steps to - rO through to - 1. We
to motivalo this work. Related problem of scheduling want to show that the pebble for at least one of these
computations on fixed-connection networks have also predecessors must have been created by the host graph
been studied (14]. before time TN - rff. The pebble for every predecessor

of (vo, to) that is created at distance i from uo in H
must be created at or before time TH - i. Thus at most
2 w b bH(uO, i) pebbles for predecessors of (v0, to) are
created by H between time step Ta' - ra' and Ta' -1I.

In this section we present lower bounds on slowdown cead by=H bete i) < T o - rf, a),
and inefficiency. Loosely speaking, these lower bounds Since rax.Ev, 1 be(U, 0) <MinEv) t! WV, A),
apply when the guest graph expands faster than theT -
host graph. The first lower bound can be used to show must be created by the host graph at or before time

that any emulation of a complete binar) .ree by a linear TH - (rf + I).

array has slowdown fl(Nq/ log Na). The second can be We can repeat the argument to find a pebble for a

used to show that a butterfly cannot perform a work- predecessor (v2, t), t2 2_ To- 2o, of (vi, i1) that must
prserving emusho ationobuttexpyandoterr, that w - be created by the host at or before time Ta' - 2(r), + 1),
preserving emulation of an expander graph, that any and so on. Eventually we obtain a pebble (vk, t) such
workpreserving emulation of a butterfly by a linear ay that 7-3 > ti > TG - kr-. This pebble must be created
ray H requires slowdown at leat 2 1(N), and that any by the host at or before time Ta'-&(ar'+ 1). We assume
work-preserving emulation of a k + -dimensional mesh that input pebbles are created at host time step 0, and
by a k-dimensional mesh H requires slowdown at least that the emulation begins with time step 1. Thus, TH -
f H(Nk'). All of these lower bounds on slowdown are k(rm' + 1) 2_ 0. Combining these inequalities, we have
tight.

Before proving the lower bounds, we need to intro- T'/To > (rm + l)/ 2ro
duce some notation. For an undirected graph G = for TG> o. 0
(V,E), let 6(u,v) be the length (number of edges)
of the shortest path between nodes u and v in G. Corollary 2 Any such emulation has inefficiency

* Let BG(u,i) = {v E V16(u,v) -5 i) be the set of/
nodes within a distance i of u in G and let bo(u,i) = > Q('

IBo(u,i)1. We call bG the growth function of G. \G NG

Corollary 3 Any emulation of a complete binary tree, as either an importer or a creator. If a block is an im-
G, by a k-dimensional mesh, H, has slowdown at least porter, then many pebbles for the block cross region

(((No/ log' No)"I(k+1)). perimeters. If a block is a creator, then some region
*I Y creates many pebbles for the block. If the majority of

Proof: Apply Theorem I with rG = e(log N 0), and the blocks are importers, then the time required by the

rM = e ((NG lo NG)/(h+')). C] host to pass pebbles across the perimeters of the re-
gions large. Otherwise, the time required to create the
pebbles is large.

2.2 Congestion-based lower bound Before we can get started we need one more piece of

The second lower bound requires a little more notation, notation. For each node v in G there is at least one

Let G = (V, E) be an undirected graph as before. For pebble created by H for each guest time step t between

a set U C V, we define the i-neighborhood of U to be 1 and TG. The first pebble created for v for time t is

the set of nodes within a distance i of some node in called the t-primarp pebble for v. For each value of t
U, NM(U) = U,,EUBo(ti). We define an (Rf(R))- there are exactly NG t-primary pebbles. The t-primary

decomposition of G to be a partition of V into eVI R pebbles are ordered according to the order in which they
setsofmpodsi egion s) suc tht ea ch ontain /R are created by H, with ties broken arbitrarily. We callsets of nodes (regions) such that each contains R nodes the first 3N 0 /4 t-primary pebbles the t-early pebbles

and has a 1-neighborhood of size at most f(R). the lst 3N14 the tmary pebbles .

The last graph parameter that we need, zG, is best and the last 3NG14 the t-late pebbles.
described in terms of a simple game. The player starts We begin with the definition an importer block. Con-
by choosing a nodes of a connected graph G and placing sider a block from step t to t - 32 + 1. The aver-
by choin a nod.Te ofayerisive a copdcting caage number of t-early pebbles created by each of the
them in a bag. The player is given a collection of ca, N/ ein ntedcmoiino sa es

0 < 1,tokns o ply wth.Thegameis layd ~ NH/R regions in the decomposition of H is at least0 :t h < 1, tokens to play with. The game is played int-busy if it
rounds, each consisting of two steps. In thecreates at leat p/2 t-early pebbles. We say that a t-
all of the neighbors of the nodes in the bag are added to early pebble is t-busy if it is created by a t-busy region.
the bag. In the second step, the player may exchange At least half of the t-early pebbles are t-busy. Thus,
tokens for nodes in the bag on a one-for-one basis. Let there are at least 3NG18 t-busy pebbles. Suppose that
X, be the set of nodes in the bag at the end of round tere re aleas / 2 t-busy pebbles. e tat
i, and let Y be the set of nodes removed in the second a t-busy region creates a _ p/2 t-busy pebbles. We saythat the region is an importer if it imports at least s/2
step of round i. Then Xg is given by the recurrence pebbles for time steps between I - I and t - 23. We

sa -a ab(Xlock) - i. The game ends when the number
of nodes in the bag exceeds it capacity, c, at the end say that a block is an importer if every t-busy region is
of a step, where c < NG. If k is the number of rounds an importer, or if some region imports at least 3N/16

played, then JXi : c for i < k, JXiJ > e for i = k, pebbles for time steps between t - 1 and t - 23. In a
and Jk IJY1 J : ca. The goal is to play as many rounds importer block, a total of at least 3NG/16 pebbles for

d i= - time steps between t - 1 and i - 22 are imported by all
as possible. Let :0(a, 4, c) be an upperbound that Is of the regions.
non-increasing in a on the length of the longest possible If t least haf of the TG/36 blocks are importers,

game. then we can find a lower bound on inefficiency by com-

puting the time required to import pebbles. In this
Theorem 4 Suppose that H f (VR) , E) as an N- case, the total number of pebbles imported by all of
node host graph woith an (R, f(R)).decomposstaon, and teipre lcsi tlatTN/2.Tehs

that G = (VG, EG) is an NG -node guest graph. Let the importer blocks is t least TlNGi32. The host
time required to import these pebbles is at least TH >_

(I ,0 IN z (3N1R 1 NG.' ToNGR1320Nfff(R), because at each host time step,
0= max f , - 4 4 8N '2' -2 " each of the NH/R regions can import at most f(R) peb-

bles. In this case,

Then for any emulation of G by H where TG > 30, 1 > R/320f(R).

I > R N_m As we shall see, if a block is not an importer then
f 320f(R)'96R " some region must create many pebbles for the block.

Hence the name creator. In a creator block there must
be some t-busy region R that creates s > p/2 t-busy

Proof: The basic strategy is to show that ei- pebbles but imports fewer than s12 pebbles for time
ther the host spends a lot of time passing pebbles steps between t - I and t - 22. The t-busy pebbles
across the perimeters of the regions in the (R,f(R))- created by R cannot be created until pebbles for all of
decomposition, or the host spends a lot of time creating their predecessors in the pebble DAG are created. Since
pebbles. We will break the To guest time steps into zG(s, 1/2, No/2) :5 zG(p/2, 1/2, NG/2) < 3, 7 imports V
blocks of 30 consecutive steps and classify every block at most s/2 pebbles for time steps between t - I and

, t-ZG(s,1/2,NG/2). Thus R must create at least NG/2 Corollary 8 Any work.presernmng emulation of a j.
pebbles for time step t- zG(s, 1/2, NG/2). Furthermore, dimensional mesh G by a k-dimenuional mesh H, j > k,

, since R imports at most 3NG116 pebbles for time steps has slowdown at least f0(NH-h)/k).
between t - I and t - 2,, it must create at least 5NG/16
pebbles for every time step between t-z(s, 1/2, NG/2) Proof: Ap-
and t - 20. For each of these time steps, at least NG/16 ply Theorem 4 with R = e((Nl/J NN)I(&+l)), f(R) =
of the pebbles are created for nodes whose (t - 20)- O(R(')/), and 6 = O(N/). The inefficiency is at
primary pebbles are (t - 21)-late pebbles. We call these least I > fl((Nk/N)'l1(h+l)).
pebbles the descendant pebbles.

We have chosen the descendant pebbles so that
none are created by H until all of the descendant 3 Emulations by arrays
pebbles for previous blocks have been created. The Although the arrays cannot perform real-time emula-
early pebbles for all time steps at or before t - 26 - tions of graphs with small diameter, we can show that
za(NG/4,0,3NG/4) must be created before the (t- 2)- they can perform work-preserving emulations of corn-
late pebbles because 3NG/4 nodes in G lie within a plete binary trees, other arrays, and butterflies. In each
distance zo(NG/4, 0, 3N 0 /4) of the nodes correspond- case, we find an embedding of the guest graph into the
ing to the first NG/4 (t - 20)-primary pebbles. Since array with acceptable load, congestion, and dilation.
za(No/4, 0,3N 0 /4) < , the early pebbles for previous The edges of the guest graph are emulated by routing
blocks must be created before the (t - 20)-late pebbles. packets between the nodes of the linear array. All of the
Furthermore, the (t - 2)-late pebbles must be created following results can be shown to be tight by Corollar-
before the descendant pebbles, which in turn must be ies 3, 8, and 7.
created before the t-busy pebbles for R.

If at least haf of the blocks are creators, then we Observation 9 An N-node k-dimensional
can derive a lower bound on inefficiency by summing mesh can perform a work-preserving emulation of an
the time to create the descendant pebbles for each of N(+l)// log N-node complete binary tree.
the creator blocks. For each of TG/ 6 creator blocks,at last13N016 escedan peblesarecreaed y a Proof: An N(k+l)/h)/ log N-node complete binary treeat leas t 6N G1 18 descendant pebbles are cre at ed by aca b e m ed d in n - o k i e s o al e h
single region. The host time for each block is at least ca be embedded in an N-node k-dimensional mesh
ON/16R. The host time for all of the creator blocks is with load (N1/h/logN), dilation 0(NI/k/log N), and
at least ToN0/96R and the inefficiency is at least

I > NH/96R. Observation 10 An N-node k-dimensional mesh can
perform a work-preserving emulation of an NJ/.node

Combining the two cases proves the theorem. 0 j-dimensional mesh, j > k.

Corollary 5 A k-dimensional mesh H cannot perform Proof: An NJ"-node j-dimensional mesh can be em-
a work-preserving emulation of an expander graph G. bedded in an N-node k-dimensional mesh with load

N(-k)/h, congestion NU - b)/b, and dilation 1. 0
Proof: Apply Theorem 4
with R =e((NM log NH)k/(h +)), f(R) = O(R(kh-)/k), Observation 11 An NH - nh.node k-dimensional
and 0 = 0(log(NH/R)). The inefficiency is at least mesh H can perform a work-preserving emulation of an
I > ((Nm/logk NH)1/(k+)). 0 NG - n2=-node butterfly graph G.

Proof: An n2"-node butterfly graph with 2' rows andCorollary 8 A butterfly network H cannot perform a coun
n columns can be embedded in a NH = nk-node k-
dimensional mesh with load O(2/nk-1), congestion

Proof: Apply Theorem 4 with R = 8(V!"-log NH), 0(2"/nk-h), and dilation 0(n). Q3
f(R) = 0(logR), and 0 = O(log(N,/R)). The ineffi- It is interesting to note that every connected network
ciency is at least tl(V'7j/ log NH). C can perform a real-time emulation of a linear array.

Hence, Observations 9 through 11 can be modified to
Corollary 7 Any work-preserving emulation of a but- hold for all connected networks.
terfly G by a k-dimensional mesh H Aus slowdown at
least 2n(N) 4 Emulations by complete binary trees

Proof: 4.1 Work-preserving emulations of bounded-
Apply Theorem 4 with R = 8((NH log NG)h/(t+l)), degree trees
f(R) = 0(R(-)/), and 0 = 0(logNo). The inef- In this section, we show that any Nlog log N-node for-
ficiency is at least I > - ((NH/logh N0)h((+l)). est with maximum degree A can be embedded in an

N-node complete binary tree with load O(Aloglog N), Thus, at level i + 2, we have .V,+2 < (5/6)N., -6 Ak
congestion O(A 2 log log N), and dilation O(log A). As In general, .V,+j is given by the recurrence
a corollary, there is a work-preserving emulation with
slowdown O(loglogN) of the class of bounded-degee N < Ak+ N" 1+ Nd
forests by the class of complete-binar) frees. -N (5/6)N' j - l + .k I < < d

In constructing the embedding, we use the following Solving the recurrence yields
weighted separator theorem for forests. N,+.. <_ 6Ak + (5/6)'-" AN,.

Theorem 12 Suppose that F = (V,E) is a forest where We are now in a position to calculate the load and
each verte: has been assigned some non-negative weight. the congestion. The preceeding argument shows that
Then it is possible remove a set S of k vertices such from for d E O(log A) and Ni E O(Ak), we have N,+d <
V such that the remaining vertices can be partitioned N,. Thus, in every simple path between a node at level
into two subforests F, and F2 such that no edge connects i and a node at level i + d, where i is a multiple of
a vertex in F, with a vertex in F2 , and each contains A, the congestion starts at O(Ak) at level i, rises to
at most IV(1 + (2/3)/2)/2 vertices and at most 5/6 of at most O(A 2k) at level i + I and proceeds to drop
the total weight. back down to at most O(Ak) at level i + d. Thus. the

congestion of the embedding is at most O(A 2 log log .V).
roofO ited. How large can the load be? At each node of the binary

We begin by using Theorem 12 to find a set S tree we embed a separator of size k. For every i that
of k E O(log log N) nodes that partitions the forest is a multiple of d, we also embed a set nodes of size
F = (V, E) into two subforests, each containing at most Ni = O(Ak). Finally, at the leaves we embed forests of
IVI(I + I/log N)/2 vertices. We embed S at the root of size N log log N((1 + 1/log N)/2)10 N, which is at most
the binary tree and then recursively embed one of the O(log log N). Thus the load is at most O(A log log N).
subforests in the left subtree of the root, and the other
in the right. 4.2 Congestion lower bounds for a complete

At levels below the root, we use Theorem 12 to si-
multaneously partition the vertices of the forest and the ternary tree
edges connecting the forest to vertices that are embed- In this section we show that any embedding of an N-
ded higher in the binary tree. Let F = (V,, E,) be a for- node complete ternary tree in an N-node complete bi-
est to be embedded in a subtree rooted at a level i node nary tree with load at most O(vTog log N) in which the
vi in the binary tree. Let Nj be the number of edges leaves of the ternary tree are mapped to the leaves of the
connecting F to vertices embedded higher in the binary binary tree has congestion at least fl(vo log ,V). This
tree; N, is the congestion of of the binary tree edge con- lower bound suggests, but does not prove, that real-time
necting v, to its parent. We assign each vertex of F a emulation of a complete ternary tree by a complete bi-
weight equal to the number of neighbors it has that are nary tree is impossible.
embedded higher in the binary tree. Using Theorem 12, Theorem 13 Any embedding of an N-node complete
we find a set S, of k vertices that partitions F into two teore in an N node completesubforests, eachofsize at most IVK(+l/logN)/2, and ternary tree an an N-node complete binarvj tree with

suboretseac ofsiz atmos J~j(1+ I lo N)2, nd load at most O(vGogT) in which the leaves of the
each having at most (5/6)N edges to vertices that a leoadrat t O(mapp to the leaves of the
embedded higher in the tree. We embed the vertices of ternary tree are mapped to the leaves of the binarj tree
S, at vi and recursively embed one of the subforests in has congestion at least
the left subtree of vi, and the other in the right subtree. Proof: Omitted.

To limit the dilation to some integer d, whenever i
is a multiple of d we embed at vj not only S but also 5 Emulations in a butterfly graph
all of the vertices in F, that have at least one neighbor
embedded somewhere higher in the binary tree. Before describing our emulations we give some notation

We must now show how to choose d so that both the concerning the butterfly graph. Recall that a butter-
congestion and the load of the embedding are small. fly graph node can be represented by a pair < i, w >.
Consider any simple path from a level i node vi in the We refer to i as the node's level. We refer to w as the
binary tree to a level i + d node, vj+d, where i is a mul- node's position in level (PIL). We consider the nodes of
tiple of d. At level i, we embed a separator of size k and the butterfly with the same PIL to be in a row. We con-
at most N other vertices that have at least one neighbor sider the inputs of the butterfly to be the nodes whose
embedded higher in the tree. Since each of these ver- representatives are of the form < 0, w >, i.e., the level
tices has at most A neighbors, N,+1 < Ak + AN,. At 0 node of a row. In the following sections we will con.
level i+ 1, we embed a separator of size k that partitions nect the inputs of a butterfly to each other via paths
F,+ into two subforests, each having at most (5/6)N,+1 through the butterfly. We make use the following theo- W
edges to vertices embedded higher in the binary tree. rem of Benes [1].

The emulation of the se x sk mesh will be divided
into fs/fk+ phases. In each phase we first attempt
to run fk+l steps of the emulation of each submesh in

I .a subbutterfly. If nothing else were done, any node of
a submesh at distance 6 from the border of the sub-mesh would not be able to be emulated for more than b
steps because the pebbles that it computes will depend

S q on pebbles from another submesh. However, for every

node v on the border of a submesh there is a node v' in
another submesh emulating the same node of the mesh

...... I which will be able to successfully emulate fs+i steps
$i+1 2/;. because it is located at distance 2fb+ from the border

of the submesh. We will show how to provide a pathFigure 1: Division of the mesh into submeshes in the butterfly between the two nodes in the butterfly

emulating v and v' of length 0(n,). When the node
Theorem 14 The inputs of an N log N-node butterfly emulating V' computes v's pebbles it will send copies
can be connected in any permutation by a set of paths of the pebbles to the node emulating v along this path.
such that each path has length at most 2 log N, and each Once the node emulating v starts receiving pebbles from
edge in the butterfly i used at most twice (once in each the node emulating v' it will resume the emulation. As
direction). the node emulating v resumes the emulation, nodes thatwere emulating nodes of the mesh that were waiting for

pebbles from v will be able to resume their emulation.
5.1 Work-preserving emulations of binary trees In order for all such pairs of nodes to be able to send

When the Bhatt, Chung, Hong, Leighton, Rmenberg pebbles back and forth simultaneously without slowing
result [2] that a butterfly can emulate a complete bi- down the emulation, it will be necessary to choose the
nary tree in real-time is combined with the mserial in paths so that a most a constant number of paths will
Section 3, we find that there is an 0(loglogN)-time share an edge, and this must be true simultaneously for
work-preserving simulation of the class of binary trees all levels of the recursion. In order to provide the paths
on the butterfly. Whether or not this emulation can be connecting nodes in the butterfly, we will not use all
performed in real-time remains an open question. subbutterflies in the partition of the butterfly for emu-

lating submeshes; some subbutterflies will be used only
for providing connections between subbutterflies.

5.2 Real time emulation of arrays We now describe how to embed the nodes of the mesh

Theorem 15 For constant q, T steps on a 1 x ... x in the butterfly and to choose the paths connecting
q dimensional mesh can be emulated in O(T) steps copies of nodes.

on a butterfly graph wsth O(N) node. So now suppose that we have chosen the embedding
of the nodes of a s+ x sxa+, mesh in a N+1. node

Proof. We prove the theorem for q = 2; for other butterfly and the paths connecting corresponding nodes
values of q the proof is similar. We will only prove the within the subbutterfly We will further require that for
theorem when T > log N; when T < log N the proof is each node v on the border or at distance 2f&+, from
similar. the border of the sk+l x sb 1 mesh (we will refer to

We will prove the theorem using recursion. We will the set of all such nodes as Fk+ 1), that there is some
divide the mesh into submeshes and the butterfly into node of the butterfly < 0, z. > and a path that connects
subbutterflies and recursively emulate each submesh in < 0, z, > to a node < i, W > that emulates v in the but-
a subbutterfly. Since submeshes will need pebbles corn- terfly such that pebbles can be sent between < 0, z. >
puted in other submeshes, we will create connections and < i, y. > without slowing down the simulation of
between the submeshes. the 'h+i x *t+, mesh. Furthermore, z, will have the

Suppose that we know how to emulate fh+s step of a property that b,,,.,_- . . bo equals 10.. .0 where st+ I is
s&+, x sk+l mesh on a butterfly with N1,+1 = n&+j2 " ' a number that will be specified later, and for all v in
nodes, n&+, is a power of two, and #2+1 = mi+lN+l, Ft+,, their values of z. will share a common value of
where 8&+1 ,fs+i, N.+,, and m&+l are numbers that b,41-1 ... b,.,, that can be chosen arbitrarily, where
will be specified later. To show how to emulate fk steps bn,,.,-l ... b0 is the binary representation of z.. We
of a sk x sh mesh on a butterfly with N& nodes, we again divide a sb x #& mesh into submeshes as decribed
first divide a sh x st mesh into s*+i x s&+1 slightly in Figure 1. Now however, we modify this method for. overlapping submeshes as shown in Figure 1. Then the dividing the mesh into submeshes. We wish to require
butterfly is partitioned into subbutterflies of size Nk+,, that all nodes in F& in the mesh will lie in F+j for any
and one submesh is assigned to a subbutterfly. submesh in which they are contained. In order to do

this, we will shrink the sizes of submeshes in at most submesh, the PIL's for the respective PIL's of u1 share
two rows and two columns of submeshes. When we re- a common value of b,+ 2,,.,-1 * .. , b' , that can be
cursively emulate fh+, steps of a submesh that has had chosen arbitrarily. We choose b+2(,._. * b,+,,+, to
its size reduc.d we will consider it to be part of a larger be b,+I-_ ...I bo, which is the same for all nodes in u's
mesh that has dummy nodes. subbutterfly. We now choose U2 to be the node in the W

We will now partition the butterfly with Nt nodes butterfly at level zero whose PIL is obtained by convert-
into subbutterflies with Nh+1 nodes. For a node in a ing the ek+1 least significant bits of u1 's PIL to 10.. -0.
butterfly we will denote the binary representation of the By our choice of subbutterflies to be used for simulat-
node's PIL by b,.-1 ... bo. Each subbutterfly will con- ing submeshes and our choice of ba+2,, I-l ...- ba+,,
sist of all nodes of the butterfly with the following prop- for ul's PIL we know that the paths from ul to U2 for
erties: there exists a such that a is a multiple of nk+I different choices of v are disjoint. One similarly chooses
possibly zero and such that all nodes in the subbutterfly nodes in the buttefly u' and ut for v'. For all choices
share common values of bo-..- bo and b, .. ba+,,, of u2 and u' we now choose paths connecting u2 and
and a < i < a + nk+l -1. u' by routing a permutation through nodes of the but-

Subbutterflies will be used to emulate submeshes. terfly which have PIL's whose et+, least significant bits
However, we will not use all butterflies to emulate sub- equals 10.. • 0 using one pa.. up through the butterfly
meshes; some subbutterflies wil be used to create con- and one pass down [1]. None of these paths will conflict
nections between subbutterflies that will be simulating with any previously chosen paths.
submeshes. WL will not use a subbutterfly it there there To finish the description of the embedding, we must
exists y such that y is a multiple of nI+1, -f.> a (where show that for each node v in F in the mesh being em-
a is the a used to describe the nodes in the subbutter. ulated, that there is a node u in the butterfly that can
fly) and b.,+E, ..- .. . b., equals the string 10.. 0 for all be connected by a path of length O(nk) to some node
nodes in the subbutterfly, or if a > 0 and bc,.,-, ... bo w in the butterfly which is emulating v so that pebbles
equals the string 10... 0 or 0-.. 0. can be sent from u to w or w to u without slowing down

We must make sure that the number of subbutterflies the simulation of the mesh, and such that u is chosen so
to be used for simulating submeshes is greater than or that it has level zero, that the q least significant bits of
equal to the number of submeshes to be emulated. The its PIL equal 10. . 0, and so that b2, .- l ... b, is some
number of submeshes is at most arbitrrly chosen number that is common for all u. We

2 first assign nodes in the mesh in F to nodes in the but-
s - + 2 terfly with the required characteristics, so that at most

one node of the mesh is assigned to a node in the butter-

(the additive two is due to the shrinkage of the size of fly. For this to be possible there must be enough nodes

some submeshes). The total number of subbutterflies in in the butterfly with the required properties, and this

the partition of the butterfly is Nk/Nk+1. The number will be true if

of subbutterflies that will not be used for simulating log 8sa < nt - 2ck. (2)
submeshes is at most

/ \2 We already know that for a node v in Fk, that there will
n+I 2/ be some node u' in the butterfly with level zero whose

+k+1 least significant bits equal 10... 0 which is con-

Thus there will be enough subbutterflies if nected by a path of length O(nk) to w; this is because
when we divided the mesh into submeshes, we requireds 2 v to be located in Fk+I of any submesh in which it

st --21 + + 21
s&+, - 2fi /was contained, and we have previously described a path

N5 n 2 from w to the desired node u'. We now again connect
< _ (.-. j 2 _6 +i_ 6+1" (1) all corresponding pairs of u's and u"s using permutation

Nk+I n+i routing as before.

We now describe how to choose the paths. We wish We now choose the values of *&, /, Nk, Ck and mk so
to choose a path connecting two nodes u and u' that that (1) and (2) are satisfied. We first denote by w(N)
are emulating nodes v and v'. We will again use a the smallest value of k such that N20" < 2. We let
to describe the subbutterfly in which u is located as b = -h log nt. We let so = vf/, and for k > 0, choose
we did previously. Since v is in F*+I for its submesh, sk and ni so that N ° - ' < sb < (N°-6)2 , nk is a power
we know that there exists some node ul in the sub- of two (Nh = nk2nh), and
butterfly such that u1 's level in the butterfly is a (it
has level zero when considered as part of the subbutter- W(N)
fly), and such that the bits b.+(, +,- .. .b in ul's PIL 2 - Nt J vn,
equals 10.. 0, and such that for all v in F&,+ in the j=k+l

where That is, if the set of long path. can be decomposed
,(2 into a constant number of (partial) permutations of the

m&=)+2 inputs of the butterfly, the long paths can be embedded(7,7- 2 fk I - -2 2-4+1 with constant congestion. It is easy to see that we can
e kembed the long paths in this manner when there are at
sWe know that we can choose such a since for all most a constant number of endpoints of long paths in

possible values of st in the specified range the product any single butterfly row. (We route a path from each

endpoint to to the input of its row. This leaves us with
fi m. a constant number of "Benes routings" to perform.)

So we map the nodes of a shuffle-exchange graph to
the nodes of a butterfly graph so that

is bounded. We also choose fo = T, fl = min{T, v/'),

and for k > 2, fk = V/o. 1. at most a constant number of shuffle-exchange
We now consider the time required for the emulation. nodes are mapped to any one butterfly node, and

Let Th be the time to emulate fl, steps of a 8k x s, mesh
on a N1, node butterfly. The emulation is divided into 2. each butterfly row contains at most a constant
f/1fs+i phases. Each phase requires time T+1 +O(ns) number of shuffle-exchange nodes which have any
and ni is O(log sh). Thus neighbor mapped to a distant node in the butterfly.

T- = . (T&+, + O(log #s)) Short paths only contribute constant congestion since

h5+1 they have constant length. Long paths only contribute

and therefore the total time for the emulation constant congestion since we can route any permuta-
tion with congestion 2, and we only need to route a

S loconstant number of (partial) permutations. Also, the
Slogs length of the short paths is constant and the long paths

k=O fkis O(log n).
S- fo log In particular, we map the nodes of a N = 2"-

-n= A+1 node shuffle-exchange graph to the nodes of a (n + 2 -
(N) log n)2"+2- t6* m 4N-node butterfly graph. Each node

= t. logs,, in thi N-node shuffle-exchange graph has n bits in its

5f +1 label. A node in the butterfly can be specified by a
row represented by n + 2 - log n bits, and a level in the

= 0(T). row. The level in the row corresponds to a bit that can

C be flipped to enter another row. Thus, we first asso-
ciate a shuffle-exchange node with a particular row of
the butterfly by removing log n - I adjacent bits of its

5.3 A constant congestion embedding of the label none of which arwe the least significant bit, then we
shuffle-exchange graph in a butterfly pick the level in the row which corresponds to where the

In this section, we show how to embed an N-node least significant bit of the shuffle-exchange node appears

shuffle-exchange graph in an O(N)-node butterfly graph in the row's representation.
with constant congestion and O(log N) dilation. We map a shuffle-exchange node w to a node in the

The N-node shuffle-exchange graph is defined for ev- butterfly as follows,
ery N which is a power of two. Each node of the
(N = 2')-node shuffle-exchange graph is associated 1. Consider the longest string of zeros in w ignoring
with a unique k-bit binary string a&-,...ao. We call the least significant bit, break ties by choosing the
this string the label of the node. Two nodes, to and w', first one from the left.
are linked via a shuffle edge if u' is a left or right cyclic
shift of w. Two nodes, to and to', are linked via an ex- 2. Pick out logn - I bits as follows;
change edge if to and v/ differ in the least significant
bit, ao. (a) If possible choose the log n - 1 bits after the

A constant congestion embedding requires that very zeros and before the lab,
few edges of the shuffle-exchange be mapped to long (b) otherwise if possible choose the log n - 1 bits
(more than constant length) path. in the butterfly. In preceding the longest string of zeros,
addition, these paths must not overlap each other very
often. T.- ensure this, we use the afore-mentioned the- (c) otherwise choose the last log n - I bits of the

* orem of ienes concerning a butterfly graph's ability to string of zeros (note that in this case more
embed a permutation on its inputs. than n - 2 log n bits are zeros).

3. Treat these bits as a number (it will be in the range to butterfly nodes. Thus the mapping maps two shuffle-
0...), call this number s, and the sequence of bits exchange nodes to two nodes that only differ in the bit
a,. that can currently be changed by a butterfly edge. Thus.

any exchange edge needs only flip the bit at the node's
4. Remove the bits of s from w, extend the chosen level, which only requires a path of length 2. Thus all

string of zeros on the right (left) by a 01 (10) if the exchange edges are embedded in short paths.
bits were removed from the right (left) of the block Now consider the shuffle edges. We show that at most
of zeros, and cyclic shift the resulting string so that a constant number of shuffle edges leave any row of the
s bits appear after the longest string of zeros, this butterfly. (It is easy to see that all the shuffle edges in a
specifies the row. row are mapped to single edges in the butterfly graph.)

Again, consider the inverse mapping of a butterfly node,
Symbolically, we map w = zOha,yb to row u0h+ itv, (p, r), to two shuffle-exchange nodes. The necklaces of

or we map w = za,0kyb to row ulO+lv, with yb: = vu the domain nodes of row r's nodes, are the same for
and JvI = s. (Note that we map to a row with a unique most of the row. They change only at certain transition
longest string of zeros not straddling the bit which is levels in the row; levels, p, in the row where the position
at the level of the butterfly node.) It is easy to see of the longest string of zeros not straddling p changes,
that the least significant bit of w, 6, is somewhere in or levels in the row where we become unsure or sure of
the representation of the row. We choose the level in which side of the zeros to replace the removed bits, a,.
the row to correspond to the position of b in the row's The posi.on of the longest string of zeros not strad-
representation. dling p only changes at two points; inside the row's

We must argue that the mapping achieves condition unique longest string of zeros. When the row level is
1 and 2 above. within log n bit positions to the right of the longest

First, we introduce some more notation. We define string of zeros, we know that pieces of two shuffle-
a necklace to be a set of shuffle-exchange nodes which exchange necklaces could have been mapped to the row.
are connected only by shuffle edges. Alternatively, a Outside this range we know that only one necklace is
necklace is a set of nodes having labels which are cyclic mapped to the row: Inside the group of zeros the bits
shifts of each other. A necklace's label is the lexico- were definitely taken out before the group of zeros, and
graphically minimum label of its nodes. We can specify further to the right they were definitely taken out after
a shuffle-exchange node by he label of its necklace and the group of zeros. Thus entering this stretch and leav-
the position of the least significant bit of the node's label ing this stretch gives us two more bad levels. Thus we
in the necklace's label, have four transition levels in all, and for each of these

We define the domain of a btiterfly node to be the at most four necklaces could enter or leave the row at
set of shuffle-exchange nodes that are mapped to it by any of these levels. Thus at most 16 long shuffle edges
our mapping. can have endpoints in this row. (Careful counting can

Now we show that the mapping is at most two to one. reduce this number to 6.)
That is, given a butterfly node (p, r) we can describe Thus at most 16 long edges are adjacent to any row
at most two shuffle-exchange nodes that could possibly of the butterfly. This satisfies condition 2, above.
be mapped to (p, r) as follows. Recall that a butterfly Thus, the shuffle-exchange graph can be embedded in
node (p, r) has all the bits of w in P's binary represen- the butterfly with constant congestion.
tation except for a,. And these, we recover by finding
the length of the string after the longest group of zeros 5.4 Application to optimal area and volume
in r's binary representation not straddling the pth bit. layouts for the shuffle-exchange graph
We know that we have to reinsert them either directly
before or directly after that group of seros. This gives The N-node butterfly can be laid out in O(N 2 / log 2 N)
us all the bits of the domain nodes except for a cyclic area (trivially) and in O(N3 1 / log 3 / 2 N) volume [201.
shift uncertainty. Thus, the domain of (p, r) can only Since the N-node shuffle-exchange graph can be embed-
be nodes from two necklaces. Furthermore, the least ded in the N-node butterfly with constant congestion,
significant bit of the nodes' labels is uniquely specified we can simply blowup these layouts by a constant fac-
by the place where the pth bit of P's binary represen- tor to obtain layouts for the shuffle-exchange graph with
tation occurs in the necklaces' labels. Thus only two equivalent area and volume.
shuffle-exchange nodes can be mapped to any node in
the butterfly. 5.5 A work preserving emulation of a shuffle-

Finally, we argue that we map at most a constant exchange graph
number of shuffle exchange nodes with distant neighbors
to any butterfly row. We construct an O(log N)- step work-preserving sim-

Notice that we always ignore the value of the least ulation of the shuffle-exchange graph on the butter- W
significant bit in the mapping of shuffle-exchange nodes fly by first embedding the shuffle-exchange graph in

an N log N-node butterfly with constant congestion, shifting by the same amount. The position in the row
and then embedding the N log N-node butterfly in an is clearly the number of shifts we used to get to wi and
N-node butterfly in the natural way. It is not diffi- the row number.
cult to show that the N-node butterfly can then simu- To finish, we observe that each edge in any of the
late the N Ig N-node shuffle-exchange in O(log N) steps. butterflies is mapped to a path of length at most three
Whether or not there is a real-time emulatioai remains in the shuffle-exchange graph since we either shift twice
an interesting open question. to reach (p + 1, r)'s image, or we exchange the current

bit and shift twice to reach (p+ 1,ri..V-...r.)'s image.

6 Emulations in a shuffle-exchange Thus we can embed VIVI log VT /T log V/-node

graph butterflies in an N-node shuffle-exchange with max load
2, and dilation 3.

6.1 Work preserving emulations of arbitrary This technique can be extended to prove that for any
binary trees constant 0 < e < 1, N' distinct N-' butterfly graphs

can be embedded in an N-node shuffe-exchange.
It is well known that the shuffle-exchange graph can

emulate a complete binary tree in real time. Thus
by the results of Section 4, we know that there is 6.3 Application to sorting on a shugale-
an O(log log N)-time work-preserving emulation of the e r
clas of binary trees on the shuffle-exchange graph. It is known that an N-node butterfly can sort N packets
Whether or not this emulation can be made real-time with high probability in O(log N) steps [11, 15, 17). The
remains an open question. result does not directly extend to the shuffle-exchange

graph because the shuffle-exchange graph does not have
6.2 A constant-dilation embedding of N' dis- the nice recursive structure possessed by the butterfly.

tinct NI-'-node butterflies However, by combining the embedding result of Sec-
tion 6.2, the butterfly sorting algorithm in [II], and the

A shuffle-exchange graph of size N can hold N' distinct columnsort algorithm of (9], we can obtain an algorithm
N1 -'-node butterfly graphs for 0 < e < 1 with max load for sorting N packets on an N-node shuffle-exchange in
and congestion of O(1/e). O(log N) steps with high probability.

We illustrate this by proving it for e = 1/2 -

log(1/2logN). That is, we embed M/logM distinct 6.4 Real time emulations of arrays
M logM-node butterfly graphs in an N = M2-node
shuffle-exchange graph with constant congestion and By combining a single level of the kind of analysis in
constant dilation. We assume that M = 2k. Thus Section 5.2 with the result of Section 6.2, we can emulate
each row of the butterfly can be represented by a k- an array in real time on a shuffle-exchange graph. This
bit string, and each node of the shuffle-exchange can is despite the fact that any 0(l) to I embedding of an
be represented by a 2k-bit string. A similar result was N-node array (with dimension 2 or more) in a shuffle
proved by Raghunathan and Saran [16]. exchange graph has dilation fl(log log N) (2].

To map MI log M butterflies to the shuffle-exchange
graph, we use the following easily proven lemma. 6.5 A work preserving emulation of the butter-

fly
Lemma 16 The set of k = log M-bi itrings has at

least M/2 log M noanatersecting subsets of log M dW- By using standard techniques in routing normal by-
ttnct strings which are cyclic shifis of eac other. percube algorithrm, it is easily shown that there is an

O(log N)-step work-preserving simulation of a butterfly
For each of these groups we pick the lexicographically on a shuffle-exchange graph. Whether or not there is a

minimum string to represent the group. We associate real-time simulation remains an important open ques-
the M/ lo M butterflies two to one with the M/2 lo M tion.
groups' representative strings. Say butterfly i is associ-
ated with string wi . We map a node (p, r) in butterfly 7 Remarks and open questions
i to a shuffle-exchange node by shuffling the bits of wi
with the bits of r's representation, and choosing the There are many questions left open by this paper. We
current bit to be under the image of rp. That is, node list a few of them in what follows.
(p, r) in butterfly. is mapped to shuffle-exchange node I. Is there a real-time simulation of a complete ternary
tlWl...W.wP...WP, tree on a complete binary tree?

From a shuffle-exchange node we can recover the rep-
resentative string wv by picking out every other bit and 2. Is there a (universal) class of bounded-degree
shifting to the lexicographically minimum string. We graphs that can simulate the class of all bounded.
finding the row string by picking out the other bits and degree graphs? (If so, they must be expanders.)

3. Is there a real-time simulation of a butterfly on a [10] F. T. Leighton, M. Lepley, and G. L. Miller, "Lay-
shuffle-exchange graph or vice-versa? outs for the shuffle-exchange graph based on the

complex plane diagram," SIAM Journal of Alge-
4. Can the notion of work-preserving be meaningfully braic and Ducrete Methods, Vol. 5, pp. 177-181.

modified to incorporate measures such as VLSI lay-
out area? [11] T. Leighton, B. Maggs, and S. Rao, "'Universal

packet routing algorithms," Proceedings of the 29th5. Are meaningful results possible if we consider sixnu- Annal Symposium on Foundations of Computer

lations that are not work-preserving, but which are Science, IEEE, October 1988, pp. 25C-271.

close to work-preserving (e.g., we allow inefficiency

of e(log N))? (12] F. T. Leighton and G. L. Miller, "Optimal lay-
outs for small shuffle-exchange graphs," VLSI 81-

Acknowledgements Very Large Scale Integration, ed. J. Gray, Academic
Press, London, 1981, pp. 289-299.

We are deeply indebted to Marc Snir for his helpful
comments and for motivating this research. Thanks also (13] F. Meyer auf der Heide, "Efficient simulations
to Tom Cormen for producing Figure 1. among several models of parallel computers,"

SIAM Journal on Computing, Vol. 15, No. 1,

References February 1986, pp. 106-119.

[11 V. E. Benes, "Optimal rearrangeable multistage [14] C. H. Papadimitriou and M. Yannakakis, "Towards
connecting networks," Bell System Technical Jour. an architecture-independent analysis of parallel I-
nal, Vol. 43, July 1964, pp. 1641-1656. goriths," Proceedings of the 20th Annual ACM

Symposium on Theory of Computing, May 1988.
(2] S. N. Bhatt, F. R. K. Chung, J.-W. Hong, F. T. pp. 510-513.

Leighton, and A. L. Rosenberg, "Optimal simu- (151 N. Pippenger, "Parallel communication with lim-
lations by butterfly networks," Proceedings of the ie er, Prallel o itio ith Aiu-20th Annual ACM Symposium on Theory of Corn- ited buffers," Proceedings of the 25th Annual
20thnual A9M pp 192-204. Symposium on Foundations of Computer Science,puting, May 1988, pp. 1IEEE, October 1984, pp. 127-136.

[3] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and (16] A. Raghunathan and H. Saran, "Is the shuffle-
A. L. Rosenberg, "Optimal simulations of tree ma- (16] A. than nd butSarn," uhe shed
chines." Proceedings of the 27th Annual Symposium exchange better than the butterfly?," unpublished
on Foundations of Computer Science, IEEE, Octo- manuscript.
ber 1986, pp. 274-282. [17] J. H. Reif and L. G. Valiant,"A logarithmic time

[4] S. N. Bhatt and I. Ipsen, Embedding Trees in the sort for linear size networks." Journal of the .4sso-

ffypercube, Yale Univ. Report RR-443. ciation for Computing Machinery, Vol. 34, No. 1.
January 1987, pp. 60-76.

[5] D. S. Greenberg, L. S. Heath, and A. L. Rosen-berg, "Optimal embeddinga of the FFT graph in (18] M. Sekanina, "On an ordering of the set of vertices
the hypercube," unpublished manuscript, of a connected graph," Pub. Faculty of Sci. Univ.Brno, Czechoslovakia, No. 412, 1960, pp. 137-142.

[6] D. Hoey and C. E. Leiserson, "A layout for the [19) D. Steinberg and M. Rodeh, "A layout for the
shuffle-exchange network," Proceedings of the 1980 (g"
International Conference on Parallel Processing, shuffle-exchange network with e(N2 /log /2 N)
IEEE, August 1980, pp. 329-336. area", IEEE Transactions on Computers, Vol. C-

30, No. 12, December '981, pp. 977-982.
[71 D. J. Kleitman, F. T. Leighton, M. Lepley, and

G.L. Miller, "New layouts for the shuffle exchange (20] D. S. Wise, "Compact layouts of banyan/FFT net-
graph," Proceedings of the 13th Annua ACM Sym- works," VLSI Systems and Computations, H. T.

posium on Theory of Computing, May 1981, pp. Kung, B. Sproull and G. Steele, eds., 1981, pp.
278-292. 186--195.

[8] C. P. Kruskal, L. Rudolph, and M. Snir, "A corn-
plexity theory of efficient parallel algorithms," un-
published manuscript.

[9] F. T. Leighton, "Tight bounds on the complexity
of parallel sorting," IEEE Transactions on Com-
puters, Vol. C-34, No. 4, April 1983, pp. 344-354.

